Matrix metalloproteinases: role in skeletal development and growth plate disorders.
نویسنده
چکیده
Differentiation is the cellular process that regulates development of long bones and joint surface cartilage of synovial cavities. Growth plate cartilage development is commonly referred to as endochondral ossification which is the end stage of long bone development. Endochondral ossification proceeds as a continuum of chondrocyte proliferation cycles followed by non-proliferative phases coupled to extracellular matrix protein transformations that are regulated by proteins of the hedgehog family and by parathyroid-hormone-related peptide and its receptor, the parathyroid-hormone-related peptide receptor. A compelling body of evidence has now emerged implicating matrix metalloproteinases (MMPs) in the process of long bone lengthening and endochondral ossification. Among the MMPs, MMP-13 (collagenase-3), MMP-9 (92-kDa gelatinase; gelatinase B) and MMP-14 (MT1-MMP) are the most abundant proteinases that regulate cellular migration, alterations in the extracellular matrix and apoptosis in growth plate cartilage. Murine mutation or ablation models of growth plate development that target MMPs often result in skeletal abnormalities, indicating the critical role that MMPs play in these animal models and in skeletal maturation. Many of the MMPs that have been identified as regulating the spatial and temporal changes in rodent and rabbit endochondral ossification have also been identified by in situ hybridization and immunohistochemical analysis of human long bone development. Genetic manipulation to correct defective or dysfunctional MMP genes or MMP activity found in certain human chondrodysplasias may provide a novel strategy for treating medical disorders characterized by skeletal anomalies.
منابع مشابه
Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development.
Coordinated production and remodeling of the extracellular matrix is essential during development. It is of particular importance for skeletogenesis, as the ability of cartilage and bone to provide structural support is determined by the composition and organization of the extracellular matrix. Connective tissue growth factor (CTGF, CCN2) is a secreted protein containing several domains that me...
متن کاملDifferential regulation of MMPs and matrix assembly in chicken and turkey growth-plate chondrocytes.
Matrix metalloproteinases (MMPs) play a crucial role in growth-plate vascularization and ossification by processes involving proteolytic cleavage and remodeling of the extracellular matrix (ECM). Their regulation in the growth plate is crucial for normal vs. impaired matrix assembly. Tibial dyschondroplasia (TD), a prevalent skeletal abnormality in avian species, is characterized by the formati...
متن کاملThe critical role of the epidermal growth factor receptor in endochondral ossification.
Loss of epidermal growth factor receptor (EGFR) activity in mice alters growth plate development, impairs endochondral ossification, and retards growth. However, the detailed mechanism by which EGFR regulates endochondral bone formation is unknown. Here, we show that administration of an EGFR-specific small-molecule inhibitor, gefitinib, into 1-month-old rats for 7 days produced profound defect...
متن کاملAltered endochondral bone development in matrix metalloproteinase 13-deficient mice.
The assembly and degradation of extracellular matrix (ECM) molecules are crucial processes during bone development. In this study, we show that ECM remodeling is a critical rate-limiting step in endochondral bone formation. Matrix metalloproteinase (MMP) 13 (collagenase 3) is poised to play a crucial role in bone formation and remodeling because of its expression both in terminal hypertrophic c...
متن کاملP 88: Matrix Metalloproteinases in Neuroinflammation
Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important in normal development, cellular differentiation or migration, angiogenesis, neurogenesis, wound repair, and a wide range of pathological processes such as oxidative stress and neuroinflammation. MMPs have been demonstrated to increase the permeability of the blood–brain barrier (BBB) by degrading the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 11 شماره
صفحات -
تاریخ انتشار 2006